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Abstract Despite its widespread use as the first-line agent for
the treatment of type 2 diabetes, it has become clear that
metformin does not work optimally for everyone.
Elucidating who are the likely metformin responders and
non-responders is hampered by our limited knowledge of its
precise molecular mechanism of action. One approach to
achieve the related goals of stratifying patients into response
subgroups and identifying the molecular targets of metformin
involves the deployment of agnostic genome-wide
approaches in cohorts of appropriate size to attain sufficient
statistical power. While candidate gene studies have shed
some light on the role of genetic variation in influencing
metformin response, genome-wide association studies are
beginning to provide additional insight that is unconstrained
by prior knowledge. To fully realise their potential, much
larger samples need to be assembled via international
collaboration, preferably involving the academic community,
government and the pharmaceutical industry.
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The problem

Metformin is the undisputed queen among type 2 diabetes
drugs. She is enthroned atop all professional society
algorithms as the first-line drug to be prescribed as soon
as the diagnosis is made [1–3], in the absence of
contraindications such as severe renal or hepatic insufficiency.
This is because among the 12 available drug classes for type 2
diabetes, it alone embodies the three cardinal virtues expected
of good medicines: it is eminently safe, cheap and effective
[4, 5]. Indeed, metformin therapy is well tolerated, with mild
gastrointestinal side effects in ~30% of patients; only ~5% of
users stop medication because of severe intolerance [6, 7]. In
general, metformin is highly efficacious and is one of the few
type 2 diabetes oral agents that promote weight loss rather
than weight gain [6, 8, 9]. In addition, this weight loss is
particularly beneficial and similar to exercise-induced weight
loss, in that it does not reduce resting energy expenditure [10];
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it is also sustained and dependent on adherence [11]. Thus, it
has become one of the most commonly used medications for
type 2 diabetes worldwide, with more than 48 million
prescriptions filled in the USA in 2010. As described else-
where in this issue of Diabetologia, metformin is also used
for diabetes prevention [12] and the treatment of polycystic
ovary syndrome [13], and there is hope that its use will expand
to other indications, such as cancer treatment and/or prevention
[14].

Despite all of these favourable qualities, metformin is
not a panacea. Clinical practice suggests, and published
trials confirm, that metformin monotherapy is often
insufficient in achieving glycaemic control. Very frequently,
escalation of therapy is required [15] and as many as 21% of
patients initiated on metformin treatment fail to meet
glycaemic goals in the first 5 years of therapy [16]. The failure
rate exceeds 50% in youth with newly diagnosed type 2
diabetes, a group in whom diabetes incidence is rising at
alarming rates [17]. The long-term follow-up of the Diabetes
Prevention Program (DPP) showed that participants
randomised to the effective metformin preventive intervention
group continued to develop diabetes over time, even while on
treatment and despite an adherence rate near 80%, heightening
the concern that metformin may only delay (by about
12months on average), rather than prevent, diabetes incidence
[9].

The metformin scenario thus illustrates a key barrier in
modern therapeutics: by focusing on the ‘average patient’, as
typified by the ideal responder in a successful clinical trial,
we neglect to capture and describe the full range of
pharmacological responses and thereby fail to identify those
in whom a specific therapy might not be appropriate. Precious
timemight be wasted in trying to achieve glycaemic control in
people in whom such a goal might be unreachable, and some
patients may be unnecessarily exposed to an unacceptable
level of side effects. To realise the promise of ‘precision
medicine’ we need to transcend the law of averages and begin
to characterise the subgroup of patients who would benefit
from an alternative to metformin upfront, either because they
do not tolerate it or because they fail to achieve glycaemic
targets.

Why are we so limited in our ability to define a group of
metformin non-responders a priori? In part, this is due to our
ignorance around the molecular target of metformin and its
precise mechanism of action.While its physiological effects in
humans have been described and we are gaining new insights
on the cellular pathways affected by the drug [18], we are still
unclear as to the specific molecular entity that metformin
physically engages with to modulate metabolism. This
knowledge gap hampers the design of experiments aiming to
describe likely non-responders but it also presents an
opportunity to conduct agnostic screens that might yield
fundamental discovery.

The genetic approach as a potential solution

Some of the individual differences that underlie the variation
in response to metformin are likely genetic in nature. For
example, epidemiological studies suggest that ethnic
disparities exist in metformin response [19], and a genetic
component is likely to underlie some of these disparities.
Nevertheless, environmental factors may also be at play, either
directly or by interacting with the genetic background; to
guide further exploration it would be useful to quantify the
relative contribution of each. Typically, this is done via
classical heritability studies but these present obvious
challenges in finding sufficient numbers of close relatives
treated with metformin and phenotyped for therapeutic
response. More recently, the availability of dense
genome-wide genotyping in cohorts in which metformin
response has been quantified allows investigators to measure
the degree of genetic relatedness with adequate precision and
estimate its contribution to the variance in the trait of interest
[20].

The Genetics of Diabetes and Audit Research Tayside
Study (GoDARTS) research group has pioneered genome-
wide association studies (GWAS) for metformin response in
participants with type 2 diabetes [21]. GoDARTS has enrolled
over 17,000 patients with established type 2 diabetes,
followed in their clinical system, and matching non-diabetes
control participants for genetic studies, leveraging the clinical
information available in the electronicmedical record. Most of
these participants have undergone genome-wide genotyping
and investigators have defined various measures of glycaemic
metformin response based on the level of HbA1c at the time of
initial metformin prescription as well as its change while on
treatment. They have also been able to control for adherence
by accessing pharmacy records. Using the genome-wide
complex trait analysis method [22], Zhou et al analysed
2085 participants with available data and concluded that the
heritability of metformin response based on common variants
captured by commercial genotyping arrays ranged from
20 to 34%, depending on the specific measure examined,
providing quantitative boundaries for the genetic effect, at
least as far as variants shared across populations are concerned
(Table 1) [23]. Heritability could possibly be higher if less
common variants are also considered.

Having established that searching for genetic determinants
of metformin response is sensible, it becomes worthwhile to
articulate the main goals of pharmacogenetic inquiry (see Text
box) [24]. One goal is to use genetic variation to stratify
patients into likely responders and non-responders, so as to
tailor therapy to those most likely to benefit. A related but
distinct goal is to identify genes that encode putative drug
targets, particularly for those pharmacological agents for
which mechanism of action is still obscure. A third goal
involves the use of a known pharmacological perturbation to
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illuminate the role of a gene of unknown function that encodes
variation responsible for the differential response; however,
for this latter exercise to be fully informative the precise
mechanism of action of the drug must be understood for the
gene product to be placed in the relevant pathway, which is not
yet the case for metformin. Thus, genetic inquiry around
metformin action has initially focused on the twin goals of
stratifying patients by levels of response and identifying its
molecular targets.

Prior to the development of GWAS approaches to
interrogate the entire genome, investigators were limited by
pre-existing biological knowledge; for metformin, research
had centred on the cellular transporters that controlled its
metabolism, which could now be queried via candidate gene
association studies. If robust associations were found they
might subserve the classification of patients into responders
and non-responders, but no new insights on metformin’s
targets would be gained; the panorama would be radically
altered with the advent of GWAS. The next sections describe
these efforts chronologically.

First phase: candidate gene studies

As a hydrophilic molecule, metformin cannot traverse cell
membranes easily and is actively transported via organic
cation transporters in enterocytes, hepatocytes and renal
epithelial cells (Fig. 1) [25]. After oral ingestion, metformin
is taken up by enterocytes via the plasma monoamine
transporter (PMAT; encoded by the gene SLC29A4) and the
organic cation transporter (OCT) 3 (encoded by SCL22A3),
both of which are localised to the luminal surface of the gut
epithelium [26, 27]. Transport to the serosal side occurs via
OCT1 (encoded by SLC22A1) [27]. In the liver, both OCT1
and OCT3 seem to be responsible for metformin uptake into
hepatocytes [25, 27–29], though, at least in mice, OCT1
appears to be the main driver [30]. Metformin is disposed into
bile by the multidrug toxin and extrusion (MATE) 1 (encoded
by SLC47A1) [31, 32], though in humans the bulk of
metformin is actively excreted unchanged into the urine
[25]: OCT2 (encoded by SLC22A2) takes it up into renal
epithelial cells through the basolateral membrane [33], while
MATE1 andMATE2 (the latter encoded by SLC47A2) excrete
it into the urine [31, 32, 34]. The expression of OCT1 and
PMAT on the apical membranes of renal epithelial cells
suggests that these transporters may also mediate metformin
reabsorption [35].

The most studied transporter regarding the impact of
genetic variation on metformin action has been OCT1. The
gene encoding OCT1, SLC22A1, is highly polymorphic, with
a number of coding missense SNPs that affect its activity
[36–39]. The Giacomini group pioneered some of these studies,
showing that the presence of at least one of four reduced-
function variants (R61C/rs12208357, G401S/rs34130495,
M420del/rs72552763 and/or G465R/rs34059508) attenuates
the glycaemic effects of a short course of metformin [30], likely
by an impairment of intracellular transport resulting in higher
maximal and AUC plasma concentrations [40]. However, in a
large retrospective observational clinical cohort of 1531
individuals assembled by GoDARTS, the two most common
reduced-function SNPs (R61C and M420del) were not
associatedwith four different measures of metformin glycaemic

Table 1 Heritability estimates of various measures of glycaemic
response to metformin obtained from a genome-wide association study
in GoDARTS

Glycaemic measure Heritability (h2)

Absolute reduction in HbA1c
a 23%

Proportional reduction in HbA1c
b 20%

Adjusted reduction in HbA1c
c 34%

Achieved target HbA1c
d 32%

The genome-wide complex trait analysis method [22] was deployed in
2085 GoDARTS participants to estimate heritability (h2 ) of various
HbA1c-based measures of metformin response. Baseline HbA1c was
obtained within 6 months of metformin initiation and on-treatment
HbA1c was defined as the lowest value attained within 18 months of
metformin initiation
a Difference between baseline and on-treatment HbA1c

b Absolute reduction in HbA1c divided by baseline HbA1c

c The residuals of absolute reduction in HbA1c adjusted by relevant clinical
covariates, such as baseline HbA1c, patient adherence, metformin dose,
renal function as estimated by creatinine clearance and treatment group
d Categorical phenotype of whether or not on-treatment HbA1c reached
the intended target of <7%, after adjustment for baseline HbA1c and
relevant clinical covariates

Table adapted from [23]

Patient stratification Genetic data may be 
used to categorise individuals into subgroups 
based on clinical response to the drug of 
interest

Target identification Agnostic genome-wide 
studies may identify genes that encode drug 
targets, elucidating a drug’s mechanism of 
action and enabling the design of novel drugs 
that act on the same pathway

Functional characterisation Because drugs 
perturb the human organism in vivo, detecting 
a differential response based on a given 
genetic variant may illuminate the function of 
the gene product encoded by the gene that 
harbours the variant, or whose expression is 
influenced by it

Aims of pharmacogenetic studies

1

2

3
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response, namely initial HbA1c reduction, odds of achieving
a target HbA1c of <7%, average HbA1c on metformin
monotherapy, or hazard of monotherapy failure, defined by
the addition of a second agent by the treating clinician [41].
Whether this is a true negative result, or a false negative finding
resulting from insufficient statistical power or the limitations

inherent to observational studies (where treatment decisions
are left to the discretion of the treating provider), is not clear.
In the prospective South Danish Diabetes Study of 105
participants [42], both trough steady-state metformin
concentrations and the change in HbA1c after 6 months were
lower with increasing number of reduced-function alleles at the
four reduced-function variants, R61C, G401S, M420del and
G465R [43]. A more recent study using radioisotope labelling
has demonstrated that accumulation of metformin in human
hepatocytes is diminished in carriers of the M420del and
R61C variants in SLC22A1, without changes in circulating
levels of the drug [44]. A study of side effects by the
GoDARTS investigators in 251 metformin-intolerant
individuals and 1915 metformin-tolerant individuals showed
that the presence of two or more reduced-function alleles at
R61C, C88R/rs55918055, G401S, M420del or G465R
increased the odds of metformin intolerance by more than
twofold, presumably by inducing accumulation of metformin
in enterocytes [45]; the effect was additive with the concomitant
use of OCT1-inhibiting medications, increasing the odds by
fourfold. An initial report of association of the SLC22A1
intronic SNP rs622342 with metformin response in a
retrospective Rotterdam study of 102 patients [46] has not been
corroborated by subsequent independent publications
[43, 47, 48]. Similarly, no associations have been found
between reduced-function variants in OCT2 and metformin
response [43, 47–49]. The Rotterdam group found an
association of the intronic SNP rs2289669 in SLC47A1
(encoding MATE1) with metformin response, with the minor
allele enhancing the reduction in HbA1c; though this finding is
supported by similar observations by the DPP [48] and Tkáč
et al [47], it was not seen in the South Danish Diabetes Study
[43] nor in a large meta-analysis recently conducted by the
Metformin Genetics (MetGen) Consortium [50]. In conclusion,
the most solid evidence seems to support a role for coding
missense variants in OCT1 with metformin response and/or
intolerance.

Second phase: GWAS

The discovery and cataloguing of millions of SNPs across the
human genome, the characterisation of their correlation
structure across major ethnic groups, the manufacturing of
high-throughput genotyping arrays, the development of
statistical frameworks for rigorous association testing, and
the assembly of human cohorts via international collaboration
have contributed to ushering in the era of genome-wide
association testing. An early collaboration by the GoDARTS
and UK Prospective Diabetes Study (UKPDS) investigators
led to the first GWAS for metformin response [21]. In a
modest discovery sample of 1024 GoDARTS participants,
an association signal with metformin response (defined as
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OCT1OCT1
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Fig. 1 Transporters responsible for the absorption and elimination of
metformin into relevant tissues. Following ingestion, metformin reaches the
gut endothelium (a), where it is taken up by enterocytes via PMAT and
OCT3, located on the luminal surface of the gut epithelium. OCT1 transports
metformin from the enterocyte to the serosal side of the endothelium.When it
reaches the liver (b), OCT1 and OCT3 aid with metformin uptake into
hepatocytes. Disposal of metformin into bile is facilitated by MATE1 and
taken up by epithelial cells in the kidney (c) via OCT2, while MATE1 and
MATE2 are involved in excretion of unchanged metformin into the urine, as
it is not metabolised in humans. Figure adapted from [56]
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either reaching the clinical goal of HbA1c <7% within
18 months of treatment initiation or a quantitative change in
HbA1c) was detected around the gene encoding the
ataxia-telangiectasia mutated kinase (ATM) (Fig. 2). The
strongest association (odds of achieving the glycaemic target,
1.6) was detected at SNP rs11212617; this signal was
followed up in an independent set of 1783 GoDARTS and
1113 UKPDS participants, achieving genome-wide statistical
significance. Other groups have reproduced this finding in
participants with established type 2 diabetes [51]; however,
the DPP has not been able to detect an association of this
SNP with diabetes incidence or change in quantitative
glycaemic traits in participants with impaired glucose
tolerance [52], a failure that may be caused by insufficient
statistical power or the intriguing possibility that
pharmacogenetic interactions may diverge at different stages
of the disease process [24].

The metformin pharmacogenetics field has coalesced to
form the MetGen Consortium [53]. In a meta-analysis of
10,557 participants with a harmonised measure of metformin
response, a genome-wide statistically significant association
was observed at the SNP rs8192675, in an intron of the
GLUT2 glucose transporter, encoded by SLC2A2 and
expressed in hepatocytes (Fig. 3) [54]. GLUT2 is an excellent
biological candidate, in that the reduction in hepatic glucose
output achieved by metformin is thought to be mediated by
this transporter. Interestingly, the same allele that was
associated with an improved response (lower on-treatment
HbA1c) was also associated with a higher baseline HbA1c,
consistent with a previously reported association of another
SNP at this locus with fasting glucose in individuals without
diabetes [55]. Hence, a larger effect was observed when

on-treatment HbA1c was not adjusted for baseline HbA1c,
though the adjusted measure, while attenuated, retained
genome-wide statistical significance. In support of the
biological relevance of this variant, levels of expression of
GLUT2 in the liver were also significantly associated with
the same SNP (the allele associated with higher baseline
HbA1c was associated with lower expression of SLC2A2).
The magnitude of this association is deemed to be clinically
relevant (0.33% absolute difference in HbA1c between the two
homozygous groups), in that it is comparable with thresholds
commonly adopted by regulatory agencies to approve type 2
diabetes drugs. Similar to the ATM association, no association
at this locus was found in the DPP, again raising the question
of whether drug × gene interactions in the prediabetes state
might differ from those in established type 2 diabetes, where
organ deterioration may have already occurred.

Conclusions and future directions

To tailor the use of metformin to the most appropriate segment
of the population, an improved understanding of its molecular
mechanism of action is necessary. Given the documented
heritability of metformin response in humans, agnostic
genomic searches can facilitate both goals, but this requires
the assembly of very large cohorts in order to detect likely
modest effects. The MetGen Consortium represents one step
in the right direction. Despite its most recent GWAS of
>10,000 samples, the combined impact of the ATM and
SLC2A2 loci on metformin response was shown to be
minimal, suggesting that many other genetic determinants of
metformin action remain to be discovered, requiring much
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Fig. 2 Manhattan plot of the first GWAS for metformin response,
indicating a single suggestive association signal in chromosome 11 near
the ATM gene. Chromosomes are arranged linearly along the x-axis and
denoted in different colours, with the negative log10 (p value) for
association being shown along the y-axis. Each dot represents a single
nucleotide polymorphism tested in the genome-wide array for association

with metformin response, defined as reaching the clinical goal of HbA1c

<7% within 18 months of treatment initiation. The blue line set at
p = 1 × 10−6 represents a threshold of suggestive statistical significance
for evidence of association. Figure adapted by permission from
Macmillan Publishers Ltd: Nature Genetics [21], copyright 2011

Diabetologia



larger sample sizes and greater precision in pharmacogenetic
measurements, such as drug doses, participant adherence and
glycaemic response. However, most samples of participants
treated with metformin and followed for glycaemic endpoints
in a controlled fashion reside in the standard-of-care arms of
randomised clinical trials for new type 2 diabetes agents,
typically housed in the realm of pharmaceutical companies.
Though non-disclosure by the pharmaceutical industry of
pharmacogenetic outcomes for proprietary compounds might
be defensible, it would be in everyone’s best interest to share
samples and data of individuals randomised to the active
standard comparator (usually metformin), as the identification
of metformin non-responders would open the door to a new
patient population for whom newer agents could be marketed.
While guarding against potential heterogeneity, a
pharmacogenetic study that used every possible sample of a
person treated with metformin, whether in healthcare systems,
publicly funded studies or industry-sponsored clinical trials,
would surely reveal new associations, leading to a richer
understanding of metformin action, the potential design of
superior agents, and better categorisation of patient subgroups
based on their likelihood to benefit from this time-honoured
treatment.

In practice, once robust pharmacogenetic associations are
discovered and confirmed, they can be aggregated into genetic
risk scores that explain a substantial proportion of the variance
in glycaemic response or the appearance of side effects. They
could be included into multi-trait genotyping arrays that

capture all known clinically actionable genetic variants for
most common diseases and approved drugs. This ‘megachip’
would only need to be deployed once in the lifetime of an
individual at an affordable cost and the information could
become part of that person’s electronic medical record.
Statistical algorithms that define the likelihood of response
could be created, tested, refined and automatically triggered
once a prescription order is initiated; decision support tools
elaborated by experts would then inform the clinician, at the
point of care, whether this patient is a good candidate for the
selected agent. The methods and expertise exist to realise this
vision but it will not come to fruition unless we generate the
required knowledge base, the data stand rigorous scrutiny and
cost-effectiveness analyses demonstrate that the benefit of
clinical outcomes outweighs the expense incurred.
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